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» Experiment data can be too
large and expensive to fit in
persistent storage limit
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Introduction
Time projection chamber (TPC) data

» Time projection chamber is a popular choice of
main tracking detector for both RHIC and EIC
experiments

P Using the sPHENIX TPC data model for this
study: high data rate and well modeled device

P Algorithm would be applicable for EIC tracker
and calorimeter too

» Compression: TPC data dominates the data

volume

» Noise filtering: TPC data may contain a high
amount of noise (> 50%) from the experiment

background
» High throughput to match TPC data taking

sPHENIX @ RHIC, 2023-2025
sPHENIX Technical Design Report

One of the EIC detector concepts, ~2030
arXiv:1402.1209


https://indico.bnl.gov/event/7081/
https://arxiv.org/abs/1402.1209
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TPC data in this study

Detector model

Detector simulation

An example of
TPC data frame

layer




Introduction
TPC data in this study

An example of
TPC data frame

Detector model Detector simulation

Preparing for the toughest
In this study, we use the 10% central Au + Au collision with 170kHz pile up,

which is busiest event in SPHENIX.

layer




Time projection chamber zoom-in
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The Amount of Data Generated by TPC

» Data format: 10-bit integer (ADC value range € [0,1023])
» Number of voxels: (azimuth x z x layer)
» Outer layer group: 2304 x 498 x 16 ~ 18M;
» Middle layer group: 1536 x 498 x 16 ~ 12M;
» Inner layer group: 1152 x 498 x 16 ~ 9M
» Digitization frequency: 20MHz;
Frame Frequency: S0KHz
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The Amount of Data Generated by TPC

» Data format: 10-bit integer (ADC value range € [0,1023])
» Number of voxels: (azimuth x z x layer)

» Outer layer group: 2304 x 498 x 16 ~ 18M;
» Middle layer group: 1536 x 498 x 16 ~ 12M;
» Inner layer group: 1152 x 498 x 16 ~ 9M

» Digitization frequency: 20MHz;
Frame Frequency: S0KHz

Uncompressed data rate: ~30 Tera bits per second

Average compressed data rate via SAMPA ASIC: ~ 2Tbps



Lossy Compression Algorithms

There are many existing compression algorithms designed for simulation-heavy
scientific data represented by dense matrices of high-precision floating-point values.

» SZ: Error-bounded lossy compressor for HPC data
https://github.com/szcompressor/SZ

> ZFP: Compressor for integer and floating-point data stored in
multidimensional arrays
https://github.com/LLNL/zfp

» MGARD: MultiGrid adaptive reduction of data
https://github.com/CODARcode/MGARD
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Lossy Compression Algorithms

There are many existing compression algorithms designed for simulation-heavy
scientific data represented by dense matrices of high-precision floating-point values.

» SZ: Error-bounded lossy compressor for HPC data
https://github.com/szcompressor/SZ

> ZFP: Compressor for integer and floating-point data stored in
multidimensional arrays
https://github.com/LLNL/zfp

» MGARD: MultiGrid adaptive reduction of data
https://github.com/CODARcode/MGARD

Problems with existing compressors

Hand-crafted and manually-tuned to suit data, missing learnable noise filtering.
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Convolutional Neural Encoder
Why we think it should work

» Convolutional neural network
(an NN architecture specialized in

processing high volume image data)
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Desirable properties of a neural encoder

Data-driven coding rule to optimize domain specific tasks, such as noise filtering.




Example of on-going auto-encoder study in modern data acquisition

Auto-encode evaluated for on-detector data compression for CMS HGC
[Reference to talk: https://indico.fnal.gov/event/46746/contributions/210450/]

Encode with Decode with
_2(? EKWIASIC off-detector
on-detector FPGA
—_— —_—
48-pixel input Transmit 16 x 3b outputs Decoded 48-
k 336 bits 48 bits pixel image/
Compact Muon Solenoid Proposed data flow with auto-encoder on

High-Granularity Calorimeter application-specific integrated circuit


https://indico.fnal.gov/event/46746/contributions/210450/

Convolutional Neural Encoder
A basic idea

Encoder E
4 ResBlocks
with conv layers

Decoder D‘

4 ResBlocks
with deconv layers
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Convolutional Neural Encoder
Problem with the basic idea
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Bicephalous Convolutional Neural Encoder

Two heads is better than one

CIf. Decoder D, ~ CIf. loss

4 ResBlocks Focal CE loss
with deconv layers [S. Lin, et al.]

ﬁ
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» (lassification decoder D, learns to recognize truth signal
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Bicephalous Convolutional Neural Encoder

Two heads is better than one

CIf. Decoder D, ~ CIf. loss
4 ResBlocks Focal CE loss
with deconv layers [S. Lin, et al.]
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Encoder £ Sigmoid output \
4 ResBlocks _ Reg. loss

with conv layers Reg Decoder'D Mean squared error
* r

4 ResBlocks
with deconv layers
ReLU output

» (lassification decoder D, learns to recognize truth signal
» Regression decoder D, learns to approximate the value of truth signal

» Decompressed data = regression masked by classification


https://arxiv.org/abs/1708.02002
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Results I: AE v.s. Bicephalous AE

Compression ratio is 1 : 27
(1:3 for SAMPA ASIC for this busiest event)
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A Missing Ingredient — Input Transform

borrowed an idea from [Y. Alanazi, et al.]

Input transform: 7 (z) = log(xz — 64)/6, x> 64
Inverse transform: 7' (y) = 64 4 exp(6y), reR
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https://arxiv.org/abs/2001.11103

Results I1. Bicephalous AE with Input Transform

ground truth bicephalous AE with transform
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Result III. Ablation Study

ground truth AE
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Result IV-i. Comparing with Existing Compression Algorithms
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Result IV-ii. Comparing with Existing Compression Algorithms
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Result V. Metrics Summary

Table: Performance comparison

Compr. ratiof MSE| log MAE] PSNR?T

MGARD 27  626.28 1.213 3.223
SZ 24 369.69 0.302 3.452
7ZFP 19 219.48 0.267 3.678
AE 27  227.61 0.349 3.703
Bicephalous AE 27  230.59 0.193 3.706

Bicephalous AE w. Transform 27 218.33 0.185 3.724




Summary and Future Direction

» Test auto-encoder-based compression and noise filtering network on highest
occupancy TPC data.

> Reach 1 : 27 compression ratio.



Summary and Future Direction

» Test auto-encoder-based compression and noise filtering network on highest
occupancy TPC data.

> Reach 1 : 27 compression ratio.

» Future directions:

» Integrating simulation ground truth into the training to improve noise rejection.

» Working well for downstream applications (for example: clustering and tracking
efficiency and position resolution)

» Data acquisition hardware integration



